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Introduction

In this report, we compare the phase and amplitude errors for a fourth-order Runge- Kutta
method with cell-edge spatial di�erences (method 1, below) with those of three other methods: a
fourth-order centered di�erence scheme (method 2, below), a second-order Runge-Kutta method
with cell-edge spatial di�erences (method 3, below), and the Bell, Colella, Howell method (method
4, below) [2]. We also compare the performance of method 1 and a Godunov projection scheme
similar to Bell, Colella, and Howell in the solution of the incompressible Navier-Stokes equations.
First, a brief description of the method used to calculate the phase and amplitude errors of the
methods.

Using Fourier analysis, the two-dimensional advection equation

ut + cux + cuy = 0 (1)

where u = (u; v), can be transformed to

i!û+ i�cû+ i�cû = 0 (2)

where
û(!; �; �) = u(t; x; y)e�i(!t+�x+�y): (3)

We can solve for ! to get the dispersion relation for (1):

! = �c(� + �): (4)

Now, given a di�erence scheme, we can follow the same procedure: Using the di�erence scheme, we
discretize equation 1, then since

unj;k = u(n�t; j�x; k�y) (5)

we can transform the equation as above. Solving for !, we obtain a relation of the form

!�t = f(��x; ��y; c
�t

�x
) + ig(��x; ��y; c

�t

�x
) (6)

The phase error, �, of the method is given by

�(��x; ��y; c
�t

�x
) = jf(��x; ��y; c

�t

�x
) + c

�t

�x
(��x+ ��y)j (7)

and the amplitude error, �, is given by

�(��x; ��y; c
�t

�x
) = jg(��x; ��y; c

�t

�x
)j: (8)

Mathematica was used to perform the procedure outlined above on the various methods, and to
plot the results. We developed a Mathematica package called Disp.m that can be used to plot the
phase and amplitude errors of the methods discussed below for any CFL number.

The Methods

No. Method

1 Four stage Runge-Kutta with second-order cell-edge di�erencing
2 Four stage Runge-Kutta with fourth-order di�erencing
3 Two stage Runge-Kutta with second-order cell-edge di�erencing
4 Bell, Colella, Howell method with second-order cell-edge di�erencing
5 BCH method with second-order cell-edges, but without time-centering
6 Four stage Runge-Kutta with second-order di�erencing
7 Four stage Runge-Kutta with three-term Taylor expanded cell-edge values
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Figure 1: Notation for Edge Values

1. RK4TDo

This is the method to be compared with methods 2, 3, and 4 below. It consists of a four-stage
Runge-Kutta scheme where the spatial derivatives are approximated using cell-edge values, ~u. These
are given by a two term Taylor series expansion about uni;j. For example,

~u
n;R

i+1
2
;j
= uni;j +

�x
2 D0;xu

n
i;j

~u
n;L

i�1
2
;j
= uni;j �

�x
2 D0;xu

n
i;j

~u
n;R

i�1
2
;j
= uni�1;j +

�x
2 D0;xu

n
i�1;j

(9)

The diagram above shows the positions of these variables as they are used in the Navier-Stokes code.
Here, ul(i,j) corresponds to ~un;L

i�1
2
;j
, etc. To determine a single value for each edge, an upwinding

procedure is used. In the case of the incompressible Navier-Stokes equations, this procedure takes
the form:

~un
i+1

2
;j
=

8>><
>>:

~u
n;L

i+ 1
2
;j

if uni;j < 0; uni�1;j < 0

~u
n;R

i+ 1
2
;j

if uni;j > 0; uni+1;j > 0

(~un;L
i+ 1

2
;j
+ ~u

n;R

i+ 1
2
;j
)=2 otherwise

(10)

For the purposes of analyzing the phase and amplitude errors, we assumed that �x = �y and that
c > 0 and always chose ~uR. The rest of the scheme is as follows:

u1i;j = uni;j +
�t
2 F(u

n
i;j)

u2i;j = uni;j +
�t
2 F(u

1
i;j)

u3i;j = uni;j +�tF(u2i;j)

un+1i;j =
(�un

i;j+u
1
i;j+2u

2
i;j+u

3
i;j)

3 + �t
6 F(u

3
i;j)

(11)

where

F(ui;j) =
�c

�x
(~ui+ 1

2
;j � ~ui�1

2
;j + ~ui;j+1

2
� ~ui;j�1

2
) (12)

2. RK4D4

In this method, the four-stage Runge-Kutta scheme above is used, but no edge values are calcu-
lated, instead the spatial derivatives are approximated by D4:

F(uni;j) = �c(D4;xu
n
i;j +D4;yu

n
i;j)

D4;xu
n
i;j =

un
i�2;j�8u

n
i�1;j+8u

n
i+1;j�u

n
i+2;j

12�x

(13)
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3. RK2TDo

This method is the same as method 1, except that a two-stage Runge-Kutta scheme is used.

u1i;j = uni;j +
�t
2 F(u

n
i;j)

un+1i;j = uni;j +�tF(u1i;j)
(14)

4. BCHDo

This corresponds to the method of Bell, Colella, & Howell.

un+1i;j = uni;j �
c�t

�x
(~u

n+1
2

i+1
2
;j
� ~u

n+1
2

i�1
2
;j
+ ~u

n+ 1
2

i;j+1
2

� ~u
n+1

2

i;j�1
2

) (15)

where û and ~u are the upwind values of the expansions below:

~u
n+ 1

2
;R

i+ 1
2
;j

= uni;j +
(�x�c�t)

2 D0;xu
n
i;j �

c�t
2�x

(ûn
i;j+1

2

� ûn
i;j�1

2

)

û
n;T

i;j+1
2

= uni;j +
(�x�c�t)

2 D0;yu
n
i;j

(16)

5. ModDo

This method is the same as method 4 except that

û
n;T

i;j+1
2

= uni;j +
�x

2
D0;yu

n
i;j (17)

6. RK4Do

This is the four-stage Runge-Kutta scheme in method 1, with the spatial derivatives approximated
by D0.

7. RK4T3

This method is the same as method 1 except that a three-term Taylor series expansion is used
to obtain the edge values:

~u
n;R

i+ 1
2
;j
= uni;j +

�x

2
(uni+1;j � uni�1;j) +

(�x)2

8
D+;xD�;xu

n
i;j (18)

Phase and Amplitude Errors

Figure 2 shows the phase errors for methods 1{4; the three Runge-Kutta methods were plotted
at CFL = 1.8, while the Bell, Colella, Howell method was plotted at CFL = 0.9. RK4TDo has
less phase error than RK2TDo, as one would expect. However, RK4D4 and BCHDo both have less
phase error than RK4TDo.

Figure 3 shows the amplitude errors for methods 1{4; again, the three Runge-Kutta methods
were plotted at CFL = 1.8, while the Bell, Colella, Howell method was plotted at CFL = 0.9. The
amplitude errors for the three Runge-Kutta methods are virtually identical (with RK2TDo slightly
higher), while that for BCHDo is much less.

The other methods discussed above can also be plotted using the Mathematica package Disp.m.
The function names for the methods are given above. For example, to plot the diagonal of the phase
error for RK4Do, plot the function ReDiagRK4Do[cfl; ��x]. Surface plots can also be generated by
plotting the two-dimensional functions, e.g. ReRK4Do[cfl; ��x; ��y]. The plots above were made
using PlotReBW[cfl; a; b], where 0 < ��x < a and 0 < !�t < b. PlotImBW[cfl; a; b] was used to
plot the amplitude errors.
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Figure 2: Diagonals of Phase Errors for Methods 1{4

0 0.1 0.2 0.3 0.4
k*dx

Amplitude Error

0.0002

0.0004

0.0006

0.0008

0.001

Im(w*dt)

BCHDo

RK4D4RK4TDoRK2TDo

Figure 3: Diagonals of Amplitude Errors for Methods 1{4

Application to Incompressible Navier-Stokes Equations

We have adapted W. J. Rider's projection code [3], plmins, to use RK4TDo to solve the incom-
pressible Navier-Stokes equations. We tested four di�erent methods of calculating the predictor:

1. Incremental Projection Form

In this method, the old pressure is used in the predictor at each Runge-Kutta stage, i.e.

u1 = un + �t
2 (��u

n � [(u � r)u]n �rpn)
u2 = un + �t

2
(��u1 � [(u � r)u]1 �rpn)

u3 = un + �t
2 (��u

2 � [(u � r)u]2 �rpn)
u� = un + �t

2 (��u
3� [(u � r)u]3�rpn)

(19)

Then u� is decomposed into the sum of its divergence free part, un+1 and the gradient of a scalar
potential, �. For details, see [1].

u� = un+1 +r� (20)
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Since u� is divergence free, we have
�� = r �u� (21)

We solve for �, and use the result to update the velocity and pressure.

un+1 = u� �r� (22)

pn+1 = pn +
�

�t
(23)

2. Pressure Projection Form

In this method the pressure is not used in the predictor step, i.e.

u1 = un + �t
2 (��u

n� [(u � r)u]n)
u2 = un + �t

2 (��u
1� [(u � r)u]1)

u3 = un + �t
2 (��u

2� [(u � r)u]2)
u� = un + �t

2 (��u
3 � [(u � r)u]3)

(24)

So the potential, �, instead of being the change in the pressure, is the new pressure itself.

pn+1 =
�

�t
(25)

3. Intermediate Projection Form

In this method, a pressure projection is done at each Runge-Kutta stage:

u1;� = un + �t
2 (��u

n � [(u � r)u]n)
��1 = r � u1;�

u1 = u1;� �r�1
(26)

u2;� = un + �t
2 (��u

1 � [(u � r)u]1)
��2 = r � u2;�

u2 = u2;� �r�2
(27)

u3;� = un + �t
2 (��u

2 � [(u � r)u]2)
��3 = r � u3;�

u3 = u3;� �r�3
(28)

u� = un +
�t

2
(��u3� [(u � r)u]3) (29)

The �nal projection is the same as in the incremental projection method.

4. Hybrid Form

Here, the old pressure is used in the �rst three Runge-Kutta stages, and a pressure projection is
done on the �nal stage.

u1 = un + �t
2 (��u

n � [(u � r)u]n �rpn)
u2 = un + �t

2 (��u
1 � [(u � r)u]1 �rpn)

u3 = un + �t
2 (��u

2 � [(u � r)u]2 �rpn)
u� = un + �t

2 (��u
3� [(u � r)u]3)

(30)

The potential, �, turns out to be a combination of the new pressure and a correction to the old
pressure so that

pn+1 =
5

6
pn +

�

�t
(31)
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Limiters

There are three options for computing spatial derivatives in the cell-edge calculation. They
can be calculated with D0 or with second- or fourth-order limited di�erence approximations. The
second-order limited di�erence is given by

�2(u)i;j = sgn(Dc(u)i;j) max[0;min(jDc(u)i;jj; 2 sgn(D
c(u)i;j)D

l(u)i;j; 2 sgn(D
c(u)i;j)D

r(u)i;j)]
(32)

where
Dl(u)i;j = ui;j � ui�1;j
Dr(u)i;j = ui+1;j � ui;j
Dc(u)i;j = (ui+1;j � ui�1;j)=2

(33)

so that (ux)i;j � �2(u)i;j=�x.
The fourth-order limited di�erence is given by

�4(u)i;j = sgn(Dc(u)i;j) max[0;min(j
4Dc(u)i;j

3
�

(�2(u)i+1;j + �2(u)i�1;j)

6
j; (34)

2 sgn(Dc(u)i;j)D
l(u)i;j ; 2 sgn(D

c(u)i;j)D
r(u)i;j)]

As before, (ux)i;j � �4(u)i;j=�x.
The results presented below were calculated using the fourth-order limited di�erence approxima-

tion.

Results

The methods were compared for speed on a doubly periodic shear layer problem using the input
parameters below. Each was run at its maximum CFL.

Variable Value

X-Length 1
Y-Length 1
viscous F
problem 3
second order limiters F
fourth order limiters T
endtime 1.0
jump width 30
velocity perturbation 0.05
number of modes -1

The table below gives the time taken by each method at its maximum CFL. The four Runge-
Kutta methods slower than the Godunov projection method, even at maximumCFL. This is due to
the time-step restrictions placed on these methods. For the Runge-Kutta methods,

�t =
CFL

2:55(kuk1=�x+ kvk1=�y)
(35)

while for the Godunov projection method, the factor 2.55 is unnecessary.

Method CFL Time

Incremental 2.3 59.814 s
Pressure 2.3 59.461 s
Intermediate 2.3 141.114 s
Hybrid 2.3 59.801 s
Godunuov 1.0 45.110 s

Figures 5{9 show the 
ow calculated by each method. Figure 4 gives the L2-norm of the diver-
gence as time progresses.
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How to Run VPLMINS

1. Select grid size by changing NX and NY in param.h

2. Recompile if necessary
3. Type vplmins
4. Select options using t or f
5. Use mplot to process the output �le, plm#.dat
6. Plot the results using plotmtv

The code is only set up for square grids so X-Length should always equal Y-Length and NX

should equal NY.

Incremental

Hybrid

Godunov

Pressure

Intermediate

   t

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

0.00 0.20 0.40 0.60 0.80 1.00

Figure 4: L2-norm of Divergence
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Figure 5: Incremental Projection Method, Vorticity at t = 1.0
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Figure 6: Pressure Projection Method, Vorticity at t = 1.0
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Figure 7: Intermediate Projection Method, Vorticity at t = 1.0
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Figure 8: Hybrid Method, Vorticity at t = 1.0
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Figure 9: Godunov Projetion Method, Vorticity at t = 1.0
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